A general, {\em rectangular} kernel matrix may be defined as $K_{ij} = \kappa(x_i,y_j)$ where $\kappa(x,y)$ is a kernel function and where $X=\{x_i\}_{i=1}^m$ and $Y=\{y_i\}_{i=1}^n$ are two sets of points. In this paper, we seek a low-rank approximation to a kernel matrix where the sets of points $X$ and $Y$ are large and are not well-separated (e.g., the points in $X$ and $Y$ may be ``intermingled''). Such rectangular kernel matrices may arise, for example, in Gaussian process regression where $X$ corresponds to the training data and $Y$ corresponds to the test data. In this case, the points are often high-dimensional. Since the point sets are large, we must exploit the fact that the matrix arises from a kernel function, and avoid forming the matrix, and thus ruling out most algebraic techniques. In particular, we seek methods that can scale linearly, i.e., with computational complexity $O(m)$ or $O(n)$ for a fixed accuracy or rank. The main idea in this paper is to {\em geometrically} select appropriate subsets of points to construct a low rank approximation. An analysis in this paper guides how this selection should be performed.
translated by 谷歌翻译
As various city agencies and mobility operators navigate toward innovative mobility solutions, there is a need for strategic flexibility in well-timed investment decisions in the design and timing of mobility service regions, i.e. cast as "real options" (RO). This problem becomes increasingly challenging with multiple interacting RO in such investments. We propose a scalable machine learning based RO framework for multi-period sequential service region design & timing problem for mobility-on-demand services, framed as a Markov decision process with non-stationary stochastic variables. A value function approximation policy from literature uses multi-option least squares Monte Carlo simulation to get a policy value for a set of interdependent investment decisions as deferral options (CR policy). The goal is to determine the optimal selection and timing of a set of zones to include in a service region. However, prior work required explicit enumeration of all possible sequences of investments. To address the combinatorial complexity of such enumeration, we propose a new variant "deep" RO policy using an efficient recurrent neural network (RNN) based ML method (CR-RNN policy) to sample sequences to forego the need for enumeration, making network design & timing policy tractable for large scale implementation. Experiments on multiple service region scenarios in New York City (NYC) shows the proposed policy substantially reduces the overall computational cost (time reduction for RO evaluation of > 90% of total investment sequences is achieved), with zero to near-zero gap compared to the benchmark. A case study of sequential service region design for expansion of MoD services in Brooklyn, NYC show that using the CR-RNN policy to determine optimal RO investment strategy yields a similar performance (0.5% within CR policy value) with significantly reduced computation time (about 5.4 times faster).
translated by 谷歌翻译
Transfer Learning is an area of statistics and machine learning research that seeks answers to the following question: how do we build successful learning algorithms when the data available for training our model is qualitatively different from the data we hope the model will perform well on? In this thesis, we focus on a specific area of Transfer Learning called label shift, also known as quantification. In quantification, the aforementioned discrepancy is isolated to a shift in the distribution of the response variable. In such a setting, accurately inferring the response variable's new distribution is both an important estimation task in its own right and a crucial step for ensuring that the learning algorithm can adapt to the new data. We make two contributions to this field. First, we present a new procedure called SELSE which estimates the shift in the response variable's distribution. Second, we prove that SELSE is semiparametric efficient among a large family of quantification algorithms, i.e., SELSE's normalized error has the smallest possible asymptotic variance matrix compared to any other algorithm in that family. This family includes nearly all existing algorithms, including ACC/PACC quantifiers and maximum likelihood based quantifiers such as EMQ and MLLS. Empirical experiments reveal that SELSE is competitive with, and in many cases outperforms, existing state-of-the-art quantification methods, and that this improvement is especially large when the number of test samples is far greater than the number of train samples.
translated by 谷歌翻译
人群顺序注释可能是一种有效且具有成本效益的方式,用于构建用于序列标签的大型数据集。不同于标记独立实例,对于人群顺序注释,标签序列的质量取决于注释者在捕获序列中每个令牌的内部依赖性方面的专业知识水平。在本文中,我们提出了与人群(SA-SLC)进行序列标记的序列注释。首先,开发了有条件的概率模型,以共同模拟顺序数据和注释者的专业知识,其中引入分类分布以估计每个注释者在捕获局部和非本地标签依赖性以进行顺序注释时的可靠性。为了加速所提出模型的边缘化,提出了有效的标签序列推理(VLSE)方法,以从人群顺序注释中得出有效的地面真相标签序列。 VLSE从令牌级别中得出了可能的地面真相标签,并在标签序列解码的正向推断中进一步介绍了李子标签。 VLSE减少了候选标签序列的数量,并提高了可能的地面真实标签序列的质量。自然语言处理的几个序列标记任务的实验结果显示了所提出的模型的有效性。
translated by 谷歌翻译
局部结构化输出学习的现有歧义策略不能很好地概括地解决有些候选人可能是假阳性或与地面真相标签相似的问题。在本文中,我们提出了针对部分结构化输出学习(WD-PSL)的新型弱歧义。首先,分段较大的边距公式被推广到部分结构化输出学习,该学习有效地避免处理大量的复杂结构候选结构化输出。其次,在拟议的弱歧义策略中,每个候选标签都具有一个置信值,表明其真实标签的可能性是多大的,该标签旨在减少学习过程中错误地面真相标签分配的负面影响。然后配制了两个大边缘,以结合两种类型的约束,这是候选人和非候选者之间的歧义,以及候选人的弱歧义。在交替优化的框架中,开发了一种新的2N-SLACK变量切割平面算法,以加速每种优化的迭代。自然语言处理的几个序列标记任务的实验结果显示了所提出的模型的有效性。
translated by 谷歌翻译
现有的部分序列标记模型主要集中在最大边缘框架上,该框架未能提供对预测的不确定性估计。此外,这些模型采用的独特地面真理歧义策略可能包括用于参数学习的错误标签信息。在本文中,我们提出了部分序列标签(SGPPSL)的结构化高斯过程,该过程编码了预测中的不确定性,并且不需要额外的努力来选择模型选择和超参数学习。该模型采用因子式近似,将线性链图结构划分为一组,从而保留了基本的马尔可夫随机场结构,并有效地避免处理由部分注释数据生成的大量候选输出序列。然后在模型中引入了置信度度量,以解决候选标签的不同贡献,这使得能够在参数学习中使用地面真相标签信息。基于所提出模型的变异下限的派生下限,在交替优化的框架中估计了变分参数和置信度度量。此外,提出了加权viterbi算法将置信度度量纳入序列预测,该预测考虑了训练数据中的多个注释,从而考虑了标签歧义,从而有助于提高性能。 SGPPSL在几个序列标记任务上进行了评估,实验结果显示了所提出的模型的有效性。
translated by 谷歌翻译
最近,由于社交媒体数字取证中的安全性和隐私问题,DeepFake引起了广泛的公众关注。随着互联网上广泛传播的深层视频变得越来越现实,传统的检测技术未能区分真实和假货。大多数现有的深度学习方法主要集中于使用卷积神经网络作为骨干的局部特征和面部图像中的关系。但是,本地特征和关系不足以用于模型培训,无法学习足够的一般信息以进行深层检测。因此,现有的DeepFake检测方法已达到瓶颈,以进一步改善检测性能。为了解决这个问题,我们提出了一个深度卷积变压器,以在本地和全球范围内纳入决定性图像。具体而言,我们应用卷积池和重新注意事项来丰富提取的特征并增强功效。此外,我们在模型训练中采用了几乎没有讨论的图像关键框架来改进性能,并可视化由视频压缩引起的密钥和正常图像帧之间的特征数量差距。我们最终通过在几个DeepFake基准数据集上进行了广泛的实验来说明可传递性。所提出的解决方案在内部和跨数据库实验上始终优于几个最先进的基线。
translated by 谷歌翻译
早期预测在临床上被认为是脑瘫(CP)治疗的重要部分之一。我们建议实施一个基于一般运动评估(GMA)的CP预测的低成本和可解释的分类系统。我们设计了一个基于Pytorch的注意力图形卷积网络,以识别从RGB视频中提取的骨骼数据中有CP风险的早期婴儿。我们还设计了一个频率模块,用于在过滤噪声时学习频域中的CP运动。我们的系统仅需要消费级RGB视频进行培训,以通过提供可解释的CP分类结果来支持交互式时间CP预测。
translated by 谷歌翻译
在本文中,我们解决了多视图3D形状重建的问题。尽管最近与隐式形状表示相关的最新可区分渲染方法提供了突破性的表现,但它们仍然在计算上很重,并且在估计的几何形状上通常缺乏精确性。为了克服这些局限性,我们研究了一种基于体积的新型表示形式建立的新计算方法,就像在最近的可区分渲染方法中一样,但是用深度图进行了参数化,以更好地实现形状表面。与此表示相关的形状能量可以评估给定颜色图像的3D几何形状,并且不需要外观预测,但在优化时仍然受益于体积整合。在实践中,我们提出了一个隐式形状表示,SRDF基于签名距离,我们通过沿摄像头射线进行参数化。相关的形状能量考虑了深度预测一致性和光度一致性之间的一致性,这是在体积表示内的3D位置。可以考虑各种照片一致先验的基础基线,或者像学习功能一样详细的标准。该方法保留具有深度图的像素准确性,并且可行。我们对标准数据集进行的实验表明,它提供了有关具有隐式形状表示的最新方法以及传统的多视角立体方法的最新结果。
translated by 谷歌翻译
逐渐的模式提取是数据库中(KDD)知识发现中的一个字段,该领域将数据集的属性之间的相关性映射为逐渐依赖性。逐渐的依赖性可以采用“较高的属性k,较小的属性L”的形式。在本文中,我们提出了一种使用概率方法来学习和提取频繁逐渐模式的蚂蚁菌落优化技术。通过对现实世界数据集的计算实验,我们将基于蚂蚁的算法的性能与现有的渐进项目集提取算法进行了比较,我们发现我们的算法表现优于后期,尤其是在处理大型数据集时。
translated by 谷歌翻译